ARClvisor: Automating Technical Risk Assessments for Agentic AI Systems

Jessica Foo!, Shaun Khoo'!, Roy Ka-Wei Lee?,
!GovTech Singapore, 2Singapore University of Technology and Design

Correspondence: jessica_foo@tech.gov.sg

Abstract

We present ARCyvisor, a web-based, open-
source system that operationalizes the Agen-
tic Risk & Capability ("ARC") Framework by
enabling organizations to declaratively define
agentic Al systems (components, design, capa-
bilities), automatically identify relevant risks
from a canonical risk registry, contextualize
them under user-specified impact/likelihood
thresholds, and generate structured risk assess-
ment reports. ARCvisor bridges the gap be-
tween conceptual Al governance frameworks
and practical adoption of agentic Al through en-
abling organization-wide scalability, promoting
standardization and consistency, while ensur-
ing human accountability throughout the pro-
cess. We describe the system architecture, user
workflow, and initial evaluation results, and
open-source the tool here to support commu-
nity adoption and external validation.

1 Introduction

The emergence of agentic Al - systems capable of
autonomous code execution, internet access, file
and data manipulation, and other powerful actions
- presents both transformative opportunities and
substantial risks. While there are technical gover-
nance frameworks, like the Al Trust, Risk, and Se-
curity Management Framework Raza et al. (2025),
the dimensional governance framework (Engin and
Hand, 2025), and the Agentic Risk & Capability
("ARC") Framework (Khoo et al., 2025), that pro-
vide a conceptual framework for identifying and un-
derstanding risks from agentic Al systems, apply-
ing them in practice remains non-trivial. Manual
risk assessments are time-consuming, error-prone,
and difficult to scale or maintain as systems evolve.

To address this, we built ARCvisor: an interac-
tive web tool that operationalizes the ARC Frame-
work by automatically producing a contextualized
risk assessment along with the recommended tech-
nical controls based on a detailed description of the

agentic Al system in terms of its elements (compo-
nents, design, capabilities) and deployment context
(domain, data sensitivity, criticality). By reduc-
ing the effort of conducting systematic risk assess-
ments, ARCvisor enables more widespread, consis-
tent, and auditable governance of agentic Al.

This work contributes:

* A novel open-source system implementing the
ARC Framework in a usable, scalable form.

* A web-based Ul and workflow suitable
for real-world governance teams (non-
researchers), promoting accessibility and
adoption.

* An initial internal evaluation demonstrating
usability, consistency, and time-savings over
manual assessment.

2 Related Work

Many existing Al governance efforts — such as
regulatory frameworks or risk-management guide-
lines — set out high-level principles but lack ef-
fective tooling for assessing the myriad of risks
arising from agentic systems, such as the EU Al
Act (European Parliament and Council of the Eu-
ropean Union, 2024) and the NIST Risk Manage-
ment Framework (National Institute of Standards
and Technology, 2023). Compliance thus depends
on ad-hoc spreadsheets, manual audits, or undoc-
umented internal processes — making them error-
prone, inconsistent, and hard to scale.

There are very few open-source tools for or-
ganizations to systematically apply technical Al
governance frameworks - most tools in this space
focus on testing, such as Inspect (Al Security In-
stitute) or Garak (Derczynski et al., 2024). The
only risk assessment tool we could find is Agent-
Wiz by Repello Al (Repello-Al), which applies
the MAESTRO framework (Huang et al., 2025)
and uses it for automated threat modelling for the

mailto:jessica_foo@tech.gov.sg
https://github.com/govtech-responsibleai/agentic-risk-capability-framework/tree/feat/streamlit/app

given agentic Al system. However, this does not
cover safety risks and lacks recommendations for
technical controls. Moreover, unlike Agent-Wiz,
ARCYvisor intentionally incorporates human deci-
sions in the assessment workflow, ensuring human
accountability. ARCvisor also offers a structured
and reproducible workflow for generating audit-
ready risk reports, which is critical in an enterprise
context. To our knowledge, ARCvisor is among
the first open-source tools explicitly targeting risk
assessment for agentic Al systems, making gov-
ernance accessible to organizations without deep
in-house Al safety or security expertise.

3 Agentic Risk & Capability Framework

The ARC Framework provides a structured tax-
onomy and process for analysing and governing
agentic Al systems and serves as the foundation of
ARCyvisor. In this section, we briefly explain each
part of the framework (elements, risks, controls),
and refer the reader to the original paper for more
details.

3.1 Elements of Agentic Systems

An agentic system is characterized by three indis-
pensable elements:

* Components, such as its core reasoning en-
gine (LLM), its attached tools (APIs, file sys-
tem, databases, etc.), its instruction template
(prompts or policies) and memory or context
storage.

* System Design, which captures how agents
are orchestrated (agentic architecture), what
access controls and roles are specified, and
what monitoring or traceability mechanisms
are in place.

» Capabilities, i.e. the autonomous actions the
system is allowed to perform — for exam-
ple cognitive (planning, delegation, tool se-
lection), interaction (language, multimodal in-
put/output, external communication), or op-
erational (code execution, data/file manipula-
tion, system operations).

3.2 Risks

Given a system’s elements, ARC identifies how
risks can materialize through general failure modes
- for instance, agent misbehavior, external manip-
ulation, or tool/resource malfunction - which may
lead to various security or safety hazards (e.g. data

leakage, privilege escalation, misinformation, un-
safe behavior, etc.). These are formalized in a Risk
Register that maps element + failure mode + haz-
ard to concrete risk entries.

This structured, policy-as-code approach enables
governance teams to treat risk assessment as a re-
peatable, auditable process rather than an ad-hoc
checklist. By encoding risks, controls, and their
triggers in machine-readable form, organizations
can automatically check, track, version-control,
and update risk profiles as agents evolve or as new
threats emerge.

3.3 Controls and Mitigations

Each identified risk is matched with recommended
technical controls - measures that either reduce the
probability of failure or limit the impact of a hazard.
The framework also recognizes that even with con-
trols in place, residual risks may remain, especially
in light of evolving capabilities and threat contexts.

3.4 Contextualization and Governance
Process

To make the framework actionable, organizations
are encouraged to contextualize risk assessment:
for a given agentic system, governance teams spec-
ify deployment context (e.g. domain, data sensi-
tivity, criticality) and set relevance thresholds (on
impact / likelihood) to filter which risks demand
mitigation. This allows differentiated governance -
lighter oversight for low-capability or low-impact
systems, stricter controls for high-risk ones - while
maintaining a consistent, auditable process across
diverse agentic deployments.

4 System Overview

4.1 Design Goals & Target Users

ARCvisor was designed to simplify the risk assess-
ment process for users not trained in cybersecu-
rity, including software developers, product man-
agers and governance teams. By formalizing the
ARC’s capabilities-centric approach in a tool, the
ARCVvisor ensures standardization and scalability
of risk assessments, while allowing for application-
specific contextualization.

* Declarative risk modeling: Users describe
what their agentic Al system comprises or pro-
vide a Github code repository link, without
needing to specify how the risk-assessment
should be done. Based on the application’s

Agentic Risk and
Capability (ARC)
Framework

v

Capabilities

Q

Controls

Risk Register

-
. —_—um —»l;/— M —
- -

1. User provides code
repository URL or
application details

2. User approves /
edits application
description

&

3. User approves /
edits selected
capabilities

10 (l)
5. User assesses

recommended controls
and residual risk

|
v

4. User approves /
edits contextualized
risk assessment

Figure 1: Overview of ARCvisor User Workflow

code or user’s description, the tool automati-
cally infers which relevant ARC capabilities
apply, and generates contextualized risk pro-
files and suggested controls.

Contextualized Assessments: ARCvisor con-
textualizes each applicable risk to the appli-
cation analyzed, specifying how the risk may
materialize based on the application’s identi-
fied components, design or capabilities. This
includes a likelihood and impact score that
is tailored to the application. Furthermore,
users can define score thresholds to retain only
relevant or high-impact risks for mitigation
through technical controls.

Documentation and Auditability: Designed
with Al auditing in mind, the process of risk
identification, contextualization and mitiga-
tion is codified into a structured workflow,
which can eventually be exported as reports.
This step-by-step process aligns with general
requirements for documentation, accountabil-
ity, and auditability, which are crucial pillars
for governance.

Human-centered Accountability: The tool
prioritizes human oversight across the auto-
mated workflow, ensuring that humans remain
accountable for each step of the assessment.
In particular, even as parts of the workflow
(i.e., description of system, identification of
capabilities, contextualization of risks) are
generated by LLMs, users are explicitly asked
to review the outputs and amend them for ac-
curacy. This ensures that humans retain ulti-
mate responsibility over the final risk assess-
ments and mitigation decisions.

4.2 System Design and Architecture

Risk Register. The core of ARCvisor is the "policy-
as-code" implementation of the ARC framework
as a Risk Register and accompanying catalog of
controls - all agentic system definitions, risk map-
pings, and control recommendations are captured
in declarative YAML files. In addition, many-to-
many relationships are established with risk and
control IDs, that are consistently referenced across
files. This structured, machine-readable represen-
tation enables automated and repeatable risk as-
sessment - users (aided by LLMs) simply declare
their system’s components, design, and capabilities,
and the tool resolves the corresponding risks and
mitigation controls via the encoded policy logic.
Even as the taxonomy of capabilities, risks, or con-
trols evolves, governance is centrally managed by
only updating the underlying codebase. All subse-
quent downstream risk assessments automatically
inherit the update. This ensures that all assess-
ments remain consistent and traceable, supporting
large-scale governance of agentic systems, while
preserving accountability via version control.

LLM Suggestions. With the core logic map-
ping capabilities — risks — controls handled
by the Risk Register, the contextualization of
risks to the specific application is managed by
LLMs. Firstly, to analyze large code reposito-
ries, code files are searched and prioritized accord-
ing to a pre-defined list of extensions (e.g., .md,
Docker files) and references to key capabilities
(e.g., API requests, databases). A coding LLM
(i.e., openai-5.1-codex) is then used to analyze
the files and return a description of the applica-
tion. If the user chooses to fill in the text boxes
to describe the application, a full description is
then generated by a general-purpose, instruction

following LLM (i.e., openai-4.1-mini). Given
the system’s description and the ARC Framework’s
list of system components, design and capabilities,
an LLM (i.e., openai-4.1-mini) is used to pre-
select applicable capabilities. Next, based on the se-
lected capabilities and the ARC Framework’s Risk
Register, a more capable LLM (i.e., openai-5.1)
contextualizes each relevant risk to the application,
providing a likelihood and impact score (out of 5)
and a reasoning for the score. Under the hood, the
system uses LiteLLM to enable API calls to any
LLM family or LLM provider, making it flexible
for organizations to change the LLMs used in the
assessment process.

Web application. To allow users to iterate and
participate in the risk assessment process, the sys-
tem uses a web frontend (built with Streamlit) for
user interaction, prompting users to verify, approve
or make edits. At the end of the workflow, users
can export their audit report accordingly.

5 Functionality & User Workflow

Figure 1 illustrates ARCvisor’s high-level user
flow.

5.1 System Declaration

Users begin by declaring the agentic Al system
under assessment in the landing page as seen in 2.
They can do so either by providing a public Github
repository link or filling up a guided form, as seen
in Figure 2. In the guided form, users describe
the functionality and purpose of their application,
technical components (e.g., architecture, tools, in-
tegrations, data flows), and risk factors such as data
sensitivity, system criticality/ accessibility or ex-
isting human-in-the-loop processes. Based on the
user’s inputs, a detailed description of the applica-
tion is generated, which the user can approve or
edit.

5.2 Capabilities Identification

Based on the description and the ARC Frame-
work’s list of capabilities, relevant capabilities are
pre-selected and presented to the user as check-
boxes. Users are also provided a full description of
capabilities in order to validate the LLM’s selection
or select additional capabilities.

5.3 Risk Assessment

Based on the selected capabilities, users are given a
contextualized risk assessment for each applicable

Option 1: Analyze a public GitHub repository

Public repo URL (GitHub)

https://github.com/org/project

We'll analyze the codebase and generate an application description automatically

Generate Application Description

Option 2: Fillin the application details manually [Try sample

What does your application do?

Describe the main functionality and purpose of your agentic Al application, as well as how a user interacts withit.

Describe the components of your application

Describe the technical components, architecture, tools, MCP servers, integrations, and data flows.

What data classification is your application?

Public/Open v

Figure 2: ARCvisor: Users choose to provide Github
code repository or fill up a guided form.

risk according to the Risk Register, as seen in Fig-
ure 3. This includes risk IDs, descriptions, as well
as likelihood and impact scores and explanations,
which users can evaluate and edit accordingly. The
score explanations are designed to reference spe-
cific failure modes and hazards that may arise for
the application. Users can then define appropriate
score thresholds for selection of mitigating mea-
sures, allowing for flexibility in risk appetites.

5.4 Risk Mitigation and Control

The system recommends controls from the ARC
Framework’s control catalog based on the risks that
exceed the thresholds defined by the user in the
previous step. Users then have the option to mark
which controls are implemented or planned, and
to describe residual risks that remain, as shown in
Figure 4. Finally, users can export the assessment
as a Word Doc report for audit and compliance
purposes.

5.5 Example Use Case

To illustrate, in our demonstration we show three
hypothetical agentic systems:

* A low-capability “chatbot-only” system (e.g.,
natural-language interaction, read-only file ac-
cess) - resulting in a small set of low-impact,
low-likelihood risks.

* A high-capability system: customer service
chatbot executing business transactions with
file/data access to sensitive customer data —
generating a much larger and more serious risk
profile, triggering more suggested controls.

Transaction Credential Vulnerability (Interaction - Business Transactions) Likelihood

Increasing

stem's vulnerability to attackers exfiltrating credentials for transactions Score

hrough the 2

2-Llow

. Vulnerabilities permitting transaction credential exfiltration would Reasoning

jeopardize customer security.

Impact
Score

~ @ 5- Very High ~

Reasoning

Possibility minimized by secure API interactions and encryption protocols. Credential theft can expose users to substantial financial risks.

Figure 3: ARCvisor: Risk example from contextualized risk assessment for a customer service chatbot.

RISK-051: Unauthorized Transactions
Allowing unauthorised transactions

Context: Chatbot interactions accidentally permitting unauthorized transactions woul

v Control 1: Require human validation for high-impact transactions

CTRL-073

Require human validation for high-impact transactions

¥ Control 2: Log all transaction requests
CTRL-074

Logging all requests leading up to the transaction

Your Implementation Status:
Describe how you have implemented this control and remaining residual risks. ®

1 did not implement this control. | accept all residual risk.

Your Implementation Status:
Describe how you have implemented this control and remaining residual risks. ®

| have implemented logging on AWS CloudWatch, including all agent decisions, reasoning traces and outputs.

Figure 4: ARCvisor: Example controls and residual risk evaluation for report generation.

The demo video walks through the full user
workflow: declaration — capabilities identification
— risk assessment — mitigations.

6 Implementation Details

The ARCvisor codebase is publicly available under
an open-source license. This includes the Risk Reg-
ister and controls files, which allows organizations
to customize risk categories and controls according
to their own governance policies. Installation in-
structions and an optional Docker configuration are
provided for local self-hosting, while a live demo
instance is deployed here.

7 Evaluation

To evaluate ARCvisor, we conducted a small in-
ternal pilot study across participants drawn from
governance and engineering teams, evaluating vari-
ous real-world agentic Al systems that our organi-
zation is assessing for deployment. We collected
the following metrics via a post-task survey, using
a 5-point Likert scale:

 Usability: Clarity of workflow, ease-of-use,
understandability of risk assessment

* Accuracy: Whether the pre-identified capabil-
ities and contextualized risk assessments by

LLMs were correct

* Coverage: Whether all "intuitively obvious"
risks were surfaced by ARCvisor

* Time efficiency: As compared to a baseline
manual risk-assessment exercise

Results. In our pilot study:

* Mean usability score was 4.8/5, while mean
accuracy score was 4.4/5. In particular, all
participants agreed that the new workflow was
clear and easy to follow.

* Participants found that ARCvisor correctly
identified the relevant capabilities and risks,
even for complex agentic systems, although
one participant highlighted that ARCvisor
missed out one capability for his system.

* All participants agreed that ARCvisor reduced
time-to-completion by more than 50% as com-
pared to manual assessment, and the signif-
icant time-saving was explicitly praised by
three participants.

These results provide early indications that AR-
Cvisor will be useful in helping governance teams
work faster, more consistently, and with better risk

https://youtu.be/JvJ9qcNYb_M
https://github.com/govtech-responsibleai/agentic-risk-capability-framework/tree/feat/streamlit/app
https://agentic-risk-assessment.app.tc1.airbase.sg/

coverage than manual methods. We acknowledge
the small sample size and limited validation; future
work will involve larger-scale studies with real-
world agentic systems.

8 Conclusion

As agentic systems become increasingly prevalent,
governance frameworks are essential for safe, eth-
ical and responsible Al deployment. ARCvisor
helps organizations translate the ARC framework’s
conceptual requirements into practical tools for
governance, thus enabling organization-wide scala-
bility, promoting standardization and consistency,
while ensuring human accountability throughout
the process. Moreover, by encoding the framework
in structured, machine-readable policy files, AR-
Cvisor enables efficient bulk assessments, version-
controlled updates, continuous improvement, and
auditability, thereby helping organizations keep
pace with change without sacrificing oversight. Fu-
ture work can build on this base by empirically
validating the risks and controls in the Risk Reg-
ister, integrating runtime monitoring or automated
enforcement tools, and developing mechanisms for
continuous feedback and registry updates.

Limitations

Due to the nascency of agentic Al and the complex-
ity of Al governance, we were only able to conduct
a small-scale internal survey for this system. This
makes it hard to evaluate if this system will be
as useful when scaled up for large organizations
or when used by organizations in other industries.
However, adoption for agentic Al is gaining speed
and both the ARC framework and ARCvisor can
easily be adapted, so in time we hope to scale up
empirical validation of this system’s usefulness.

Ethics and Broader Impact

ARCyvisor is designed to enable safer, more respon-
sible deployment of agentic Al systems by provid-
ing structured, transparent, and repeatable technical
risk assessments. The tool operationalizes the ARC
Framework into a practical workflow that supports
accountability, auditability, and human oversight
in real-world governance contexts. By helping or-
ganizations systematically identify safety, security,
and ethical risks early in the development lifecycle,
ARCvisor aims to reduce the likelihood of harmful
outcomes associated with autonomous code execu-
tion, external tool use, or sensitive data access.

The system explicitly prioritizes human-centered
accountability: while LLLMs are used to assist in
identifying capabilities and contextualizing risks,
final decisions always remain with human review-
ers. ARCvisor’s design avoids fully automated
approval or governance decisions, and instead re-
quires manual verification and justification for each
assessment step. This ensures that organizations
retain responsibility over risk-based decisions and
avoids over-reliance on automated judgments.

We acknowledge several ethical considerations.
First, the Risk Register and underlying LLM-
generated suggestions may introduce biases or in-
complete coverage, especially in rapidly evolving
threat landscapes. To mitigate this, ARCvisor is
open-source and fully transparent, allowing inde-
pendent auditing, extension, and critique by the
community. Second, early evaluations were con-
ducted internally with a small sample size; future
larger-scale studies will be needed to ensure robust-
ness across domains and contexts. Third, while
ARCyvisor can highlight risks and recommend tech-
nical controls, it does not guarantee the prevention
of harm if deployed without complementary gover-
nance measures such as legal review, operational
controls, or domain-specific compliance.

Overall, we believe ARCvisor contributes posi-
tively to the ecosystem by lowering the barrier for
organizations—especially those without deep Al
safety expertise—to adopt structured risk gover-
nance for agentic systems. As adoption of agentic
Al accelerates, tools like ARCvisor can promote
safer innovation, reduce unintentional harms, and
support alignment with emerging governance stan-
dards and regulatory frameworks such as the EU Al
Act and NIST AI RMF. We encourage responsible
use and community participation in strengthening
both the risk taxonomy and evaluation methodol-

ogy.

References

UK AI Security Institute. Inspect Al: Framework for
Large Language Model Evaluations.

Leon Derczynski, Erick Galinkin, Jeffrey Martin, Subho
Majumdar, and Nanna Inie. 2024. garak: A Frame-
work for Security Probing Large Language Models.

Zeynep Engin and David Hand. 2025. Toward adaptive
categories: Dimensional governance for agentic ai.
Preprint, arXiv:2505.11579.

European Parliament and Council of the European
Union. 2024. Regulation (eu) 2024/1689 of the euro-

https://github.com/UKGovernmentBEIS/inspect_ai
https://github.com/UKGovernmentBEIS/inspect_ai
https://arxiv.org/abs/2505.11579
https://arxiv.org/abs/2505.11579

pean parliament and of the council of 13 june 2024
laying down harmonised rules on artificial intelli-
gence (artificial intelligence act). https://eur-lex.
europa.eu/eli/reg/2024/1689/0j/eng. Ac-
cessed: 2025-05-11.

Yuanzhao Huang and 1 others. 2025. On the resilience
of llm-based multi-agent collaboration with faulty
agents. arXiv preprint arXiv:2408.00989v3.

Shaun Khoo, Jessica Foo, and Roy Ka-Wei Lee. 2025.
With Great Capabilities Come Great Responsibilities:
Introducing the Agentic Risk & Capability (ARC)
Framework for Governing Agentic Al Systems. In
Proceedings of the AAAI 2026 3rd International Al
Governance Workshop. Accessed: 2025-12-02.

National Institute of Standards and Tech-
nology. 2023. Nist ai risk management
framework playbook. https://www.nist.
gov/itl/ai-risk-management-framework/
nist-ai-rmf-playbook. Accessed: 2025-05-11.

Shaina Raza, Ranjan Sapkota, Manoj Karkee, and Chris-
tos Emmanouilidis. 2025. Trism for agentic ai: A
review of trust, risk, and security management in
Ilm-based agentic multi-agent systems. Preprint,
arXiv:2506.04133.

Repello-Al Agent-Wiz.

https://eur-lex.europa.eu/eli/reg/2024/1689/oj/eng
https://eur-lex.europa.eu/eli/reg/2024/1689/oj/eng
https://arxiv.org/abs/2408.00989v3
https://arxiv.org/abs/2408.00989v3
https://arxiv.org/abs/2408.00989v3
https://openreview.net/pdf?id=znQ4faCcY0
https://openreview.net/pdf?id=znQ4faCcY0
https://openreview.net/pdf?id=znQ4faCcY0
https://www.nist.gov/itl/ai-risk-management-framework/nist-ai-rmf-playbook
https://www.nist.gov/itl/ai-risk-management-framework/nist-ai-rmf-playbook
https://www.nist.gov/itl/ai-risk-management-framework/nist-ai-rmf-playbook
https://arxiv.org/abs/2506.04133
https://arxiv.org/abs/2506.04133
https://arxiv.org/abs/2506.04133

	Introduction
	Related Work
	Agentic Risk & Capability Framework
	Elements of Agentic Systems
	Risks
	Controls and Mitigations
	Contextualization and Governance Process

	System Overview
	Design Goals & Target Users
	System Design and Architecture

	Functionality & User Workflow
	System Declaration
	Capabilities Identification
	Risk Assessment
	Risk Mitigation and Control
	Example Use Case

	Implementation Details
	Evaluation
	Conclusion

